
CENTRO DE ESTUDIOS
MONETARIOS Y FINANCIEROS

www.cemfi.es

January 2017

working paper
1705

Casado del Alisal 5, 28014 Madrid, Spain

Optimal Spatial Taxation:
Are Big Cities too Small?

Jan Eeckhout
Nezih Guner



jan.eeckhout@ucl.ac.uk

Keywords: Misallocation, taxation, population mobility, city size, general equilibrium.

Jan Eeckhout
UCL and Barcelona GSE-UPF-ICREA

Nezih Guner
CEMFI
nezih.guner@cemfi.es

We analyze the role of optimal income taxation across different local labor markets. Should labor in
large cities be taxed differently than in small cities? We find that a planner who needs to raise a
given level of revenue and is constrained by free mobility of labor across cities does not choose
equal taxes for cities of different sizes. The optimal tax schedule is location specific and tax
differences between large and small cities depends on the level of government spending, the
concentration of housing wealth and the strength of agglomeration economies. Our estimates for the
US imply higher optimal marginal rates in big cities than in small cities. Under the current Federal
Income tax code with progressive taxes, marginal rates are already higher in big cities which have
higher wages, but the optimal difference we estimate is lower than what is currently observed.
Simulating the US economy under the optimal tax schedule, there are large effects on population
mobility: the fraction of population in the 5 largest cities grows by 7.6% with 3.4% of the country-wide
population moving to bigger cities. The welfare gains however are smaller. This is due to the fact that
much of the output gains are spent on the increased costs of housing construction in bigger cities.
Aggregate goods consumption goes up by 1.51% while aggregate housing consumption goes down
by 1.70%.

CEMFI Working Paper No. 1705
January 2017

Optimal Spatial Taxation:

Abstract

JEL Codes: H21, J61, R12, R13.

Are Big Cities too Small?



Acknowledgement

We are grateful to seminar audiences and numerous colleagues, and in particular to Morris Davis,
John Kennan, Kjetil Storesletten, Aleh Tsyvinski, and Tony Venables for detailed discussion and
insightful comments. Andrii Parkhomenko provided excellent research assistance. Eeckhout
gratefully acknowledges support by the ERC, Grant 339186. Guner gratefully acknowledges support
by the ERC, Grant 263600 and the Spanish Ministry of Economy and Competitiveness Grant
ECO2014-54401-P.



1 Introduction

What is the role of income taxation for the location choice of agents across different cities? We argue

that taxation is an institution that affects the allocation of resources across space and and hence

efficiency. Wages and productivity for identical workers are considerably higher in larger cities. This is

known as the Urban Wage Premium. At the same time, the size of a local labor market is determined

by local prices for labor and housing. Higher wages attract more workers while higher housing prices

deter them, until in equilibrium they are indifferent across different locations and utility is equalized

across cities. In this General Equilibrium context, we analyze the role of federal income taxation and

show that optimal taxation of labor income should depend on the location. Existing progressive income

taxation policies tax earnings of equally skilled workers more in larger cities. Workers in larger cities

are more productive and earn higher wages, and as a result, they pay a higher average tax rate. In

the US, for example, wages for identically skilled workers living in an urban area like New York (about

9 million workers) are 50% higher than wages of those living in smaller urban areas (say Asheville,

NC with a workforce around 130,000). As a result of progressive taxation, the average tax rate of a

representative worker is almost 5 percentage points higher in NY than it is in Asheville.

Our main finding is that existing taxation regimes lead to the misallocation of resources across space.

Taxation of labor incomes across different locations affects location decisions in general equilibrium.

Wages and housing prices are determined endogenously in a world where workers optimally choose

consumption and housing, and freely locate where to live and work. Our objective is first to compute

the equilibrium allocation of the workforce across cities in the presence of the current tax structure in

the US, and then derive the tax schedule that will maximize welfare and collect the same tax revenue.

When taxes change, citizens respond by relocating, but that in turn affects equilibrium prices. Those

equilibrium effects determine both the optimal tax schedule as well as the quantitative implications.

Within this framework, in which the planner is constrained by free mobility of workers, we find that

the optimal income tax rates vary across local labor markets. The optimal tax rates depend on three

key forces: the level of government spending, the concentration of housing wealth, and the strength of

agglomeration economies. 1. Taxes in big cities relative to those in small cities decrease as government

spending increases. Higher government spending increases all taxes, but it is more efficient for the

planner to generate the revenue by attracting more workers to the big, more productive city. This is

achieved by setting relatively low taxes in big cities. 2. Relative taxes in the big cities increase as

the concentration of housing wealth increases. Since concentrated housing wealth does not benefit the

population at large, the utilitarian planner does not put weight on it. A larger fraction of the population

in big cities increases the value of housing there, which when concentrated in few hands, is not desirable

for the planner. The planner therefore sets relatively high taxes in big cities. 3. Taxes in big cities

relative to those in small cities also decrease as the strength of agglomeration economies increases. The

planner find it optimal to lower taxes in larger cities since agglomeration generates an extra benefit of
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allocating more workers to productive cities.

Quantifying these findings for the US economy using the current taxation regime, we find a rationale

for city specific taxation with higher taxes in big cities relative to small cities as we currently observe

due to existing progressive federal income tax schedules. However, the optimal tax difference between

big and small cities should be lower.1 Implementing the optimal tax schedule implies that after tax

wages increase in large cities taking advantage of the higher TFP of workers in large cities. As a result,

there is a first order stochastic dominance shift in the city size distribution.

For US data, the impact of the optimal tax policy are far reaching. In the benchmark economy, the

population in the five largest cities grows by 7.6%. About 3.4% of the workforce move from smaller to

bigger cities countrywide. The aggregate output increases by 1.42%. The gains in terms of utility are,

however, much smaller. The experiment that results in an 1.42% increase in GDP only leads to a 0.07%

increase in Utilitarian welfare. The small utility gain is due to the fact that most of the output gain in

the more productive cities is eaten up by higher housing prices, which go up by 5.2% on average. As

a result, while aggregate consumption goes up by 1.51%, aggregate housing consumption declines by

1.70%. Those moving to the big cities take advantage of the higher after tax incomes, but they end up

paying higher housing prices. It is precisely the role of housing prices that implies that the optimal tax

schedule has higher taxes in big cities.

The model that we use to quantify the optimal spatial taxation has many features to capture the

reality. First, the production of housing is endogenous to account for the fact that the value share of

land is much higher in big cities than in small cities.2 And it takes into account that the amount of land

available for construction differs across locations. Some coastal cities are constrained by the mountains

and the sea, whereas others in the interior have unconstrained capacity for expansion. Second, the

model allows for congestion externalities that are increasing in city size. Third, housing is modeled in

such a way that the rental price of land is retained in the economy as a transfer, while the construction

cost eats up consumption goods. Fourth, we allow for amenities across different locations as the residual

of the utility differences. Finally, while government expenditure is distortionary, a share of tax revenues

is redistributed to the citizens. Even if we do not explicitly model expenditure on public goods, this

accounts for the fact that tax revenues also generate benefits.3

We investigate in detail which features matter qualitatively and quantitatively for optimal taxation.

We find that the optimal tax schedule is sensitive to the size of government, the concentration of housing

ownership and the strength of agglomeration economies. 1. Increasing the size of government, i.e., the

1In the quantitative analysis, we parametrize the relation between after and before-tax wages, w̃ and w, as w̃ = λw1−τ ,
where 1 − λ is the level of taxation and τ determines the progressivity. Average tax rate is given by 1−λw−τ . Taxes are
progressive (regressive) when τ > 0 (τ < 0). For the benchmark economy, λ = 0.85 (i.e. the average tax rate at w = 1 is
15%) and τ = 0.12. The optimal value of τ is quite smaller, τ∗ = 0.0139.

2See Davis and Palumbo (2008), Davis and Heathcote (2007), and Albouy and Ehrlich (2012).
3We exclusively focus on the spatial distortion at the collection side. There could also be a distortion at the benefit

side, for example where big cities are more or less generous in federal benefits for the unemployed and the disabled (see
Glaeser (1998)). In our model, we abstract from this important channel altogether and focus on the role of active, full
time workers.
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aggregate tax rate, from 15% (its benchmark value) to 18.5% implies that the optimal tax schedule is

regressive (i.e. taxes are smaller in larger cities). This is because it is more efficient to generate revenue

from workers in high productivity – and hence large – cities, which can only be achieved by attracting

more workers through a lower progressiveness. 2. In our benchmark economy, the share of homeowners

is calibrated to the US economy. If we vary homeownership to 100% – all households own a home –

the optimal tax schedule becomes strongly regressive, while it becomes strongly progressive when all

homes are owned by absentee landlords. A regressive tax schedule, which attracts workers to larger

cities and increases the housing prices there, is less attractive for the planner if the benefits of higher

housing prices are enjoyed by absentee landlords. 3. We also introduce agglomeration economies where

city Total Factor Productivity is determined endogenously through size of the workforce. This results

in a regressive tax schedule.4

Instead, we find that the key finding, the fact that the optimal tax schedule is progressive but less

than the current US income tax schedule, is not sensitive to the following: whether or not we control for

worker characteristics (such as education, gender, and race) in the wage calculations for cities, whether

land areas are assumed identical for all cities or whether they are the actual area, whether or not there

is housing production, and whether or not taxes are used for transfers and rebated to households.

This paper is related to the work on urban accounting by Desmet and Rossi-Hansberg (2013) who

analyze the effects on output from the relocation of productive resources.5 Instead of analyzing the effect

of technological change, we take the technology as exogenous and ask what the role is of the change in an

institution, in this case federal income taxation. Our results on reallocation of labor across cities echoes

Klein and Ventura (2009) and Kennan (2013) who study free mobility of workers across countries, and

who find larger output gains. In the light of the misallocation debate in macroeconomics on aggregate

output differences due to the misallocation of inputs, most notably capital, e.g. Guner, Ventura, and

Yi (2008), Restuccia and Rogerson (2008) and Hsieh and Klenow (2009), we add a different insight.

Due to existing income taxation schemes, also labor is substantially misallocated across cities within

countries. Hsieh and Moretti (2015) and Parkhomenko (2016) also study spatial misallocation of labor

across cities. They focus, however, on misallocation caused by restrictive housing policies. More closely

related to our paper, Fajgelbaum, Morales, Suárez-Serrato, and Zidar (2016) study state taxes as a

potential source of spatial misallocation in the United States, and find that tax dispersion across states

leads to aggregate losses.

The idea that taxation affects the equilibrium allocation is of course not new. Tiebout (1956)

analyzes the impact of tax competition by local authorities on the optimal allocation of citizens across

communities. Wildasin (1980), Helpman and Pines (1980) and Hochman and Pines (1993), among

others, explicitly consider federal taxation and argue that it creates distortions. A common result in

4When we set λ = 0.815 (instead of λ = 0.85 for the benchmark economy), τ∗ = −0.0245 (instead of τ∗ = 0.0139
for the benchmark economy). With 100% (0%) home ownership, we find τ∗ = −0.1378 (τ∗ = 0.0776). Finally, when we
introduce agglomeration externalities, τ∗ = −0.0517.

5See also Topa, Sahin, and Violante (2014) for the role of unemployment frictions on spatial mismatch.
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this literature is that a tax on the immobile factor, land, is necessary to achieve the efficient allocation.

This literature, however, often studies highly stylized models that are not amenable to quantitative work.

In the legal literature, Kaplow (1995) and Knoll and Griffith (2003) argue for the indexation of taxes

to local wages. Albouy (2009) and Albouy and Seegert (2010) do analyze the question quantitatively.

Starting from the Rosen-Roback tradeoff between equalizing differences across locations, they calibrate

the model and conclude that any tax other than a lump sum tax is distortionary. They do not, however,

attempt to characterize the optimal tax structure. Our results highlight that it is indispensable to study

optimal spatial taxation in a general equilibrium framework.

What sets our work apart from the existing literature is a comprehensive quantitative framework

that fully takes into account the general equilibrium effects, the endogeneity of housing prices and

consumption, which in turn allows us to focus on the optimality of taxation. Furthermore, our results

highlight two novel forces, the level of government spending and on the concentration of housing wealth,

that affect critically the optimal tax structure. The existing literature often assumes that the housing

wealth is equally distributed among households, and there has not been any previous attempt to link

the optimal tax structure to the size of the government.

2 The Model

Population. The economy is populated by a continuum of identical workers. The country-wide measure

of workers is L. There are J locations (cities), j ∈ J = {1, ..., J}. The amount of land in a city is fixed

and denoted by Tj . The total workforce in city j denoted by lj . The country-wide labor force is given

by L =
∑

j lj .

Preferences, Amenities and Congestion. All citizens have Cobb-Douglas preferences over consumption

c, and the amount of housing h, with a housing expenditure share α ∈ [0, 1]. This choice is motivated by

Davis and Ortalo-Magné (2011), who find that US households spend roughly the same fraction of their

income on housing independent of their income level. The consumption good is a tradable numeraire

good with price normalized to one. The price for one unit of land is pj . The real estate market is

perfectly competitive so that the flow payment equals the rental price. Workers are perfectly mobile

and can relocate instantaneously and at no cost. Thus, in equilibrium, identical workers obtain the

same utility level wherever they choose to locate. Therefore for any two cities j, j′ it must be the case

that the respective consumption bundles for an individual worker satisfy u(cj , hj) = u(cj′ , hj′).

Cities inherently differ in their attractiveness that is not captured in productivity, but rather is

valued directly by its citizens. This can be due to geographical features such as bodies of water (rivers,

lakes and seas), mountains and temperature, but also due to man-made features such as cultural

attractions (opera house, sports teams, etc.). We denote the city-specific amenity by aj , which is known

to the citizens but unobserved to the econometrician. We will interpret the amenities as unobserved
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heterogeneity that will account for the non-systematic variation between the observed outcomes and

the model predictions. It is crucial that for the purpose of the correct identification of the technology,

this error term is orthogonal to city size. Albouy (2008) provides evidence that the bundle of observed

amenities – both positive and negative – are indeed uncorrelated with city size.

In addition to city-specific amenities, to capture the cost of commuting, we allow for a congestion

externality. Unlike the amenity, which is city-specific, the congestion systematically depends on the

city size and is given by lδj , where δ < 0 (as in Eeckhout (2004)).

The utility in city j from consuming the bundle (c, h) is therefore written as:

u(c, h) = ajl
δ
jc

1−αhα.

Technology. Cities differ in their total factor productivity (TFP) which is denoted by A. TFP is

exogenously given. In each city, there is a technology operated by a representative firm that has access

to a city-specific TFP Aj , given by

F (lj) = Ajl
γ
j . (1)

Firms pay wages wj for workers in city j. Wages depend on the city j because citizens freely locate

between cities not based on the highest wage, but, given housing price differences, based on the highest

utility. Firms are owned by absentee capitalists. For most of the empirical exercise, we will use a

production technology that is linear, i.e., γ = 1.

Housing Supply. The supply of housing in each city j is denoted by Hj . Housing stock is produced by

means of capital Kj and the exogenously given land area Tj according to the following CES production

technology:

Hj = B
[
(1− β)Kρ

j + βT ρj

]1/ρ
, (2)

where β ∈ [0, 1] indicates the relative importance of capital and land in housing production, and B

indicates the total factor productivity of the construction sector. The elasticity of substitution between

K and T is given by 1
1−ρ . We assume that housing capital is paid for with consumption goods, and

hence the marginal rate of substitution between consumption and housing is equal to one and the rental

price of capital is equal to the numeraire. The rental price of land is denoted by rj . Given this constant

returns technology, we assume a continuum of competitive construction firms with free entry. A special

case where β = B = 1 is where housing is exogenous and Hj = Tj and rj = pj .

While the housing capital to build structures is foregone consumption, the land rents are transfers

and stay in the economy. We assume that a fraction ψ of land is owned by measure zero landlords and

a fraction 1− ψ is owned in equal shares by each worker in the economy in the form of a bond that is
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a diversified portfolio of the country’s land supply. As a result, there is a transfer Rj to each agent:

Rj = (1− ψ)

∑
j rjTj∑
j lj

. (3)

The parameter ψ captures the fact that housing ownership is not perfectly diversified.6 As we will

see below, the details of the ownership structure are important for the results.

Market Clearing. The country-wide market for labor clears,
∑J

j=1 lj = L, and for housing, there is

market clearing within each city hjlj = Hj , ∀j. Under this market clearing specification, only those

who work have housing. We interpret the inactive as dependents who live with those who have jobs.

Taxation. The federal government imposes an economy-wide taxation schedule. Its objective is to raise

an exogenously given level of revenue G to finance government expenditure. Denote the pre-tax income

by w and the post-tax income by w̃. Denote by tj the specific tax rate that applies to workers in city

j. Then w̃j = (1 − tj)wj . Often tax schedules are substantially simpler. For example, federal taxes

typically do not depend on the location j and there is a systematic degree of progressivity.7 To that

purpose, we assume that the progressive tax schedule can be represented by a two-parameter family

that relates after-tax income w̃ to pre-tax income w as:

w̃j = λw1−τ
j ,

where λ is the level of taxation and τ indicates the progressivity (τ > 0). This is the tax schedule

proposed by Bénabou (2002). Heathcote, Storesletten, and Violante (2013) use the same function to

study optimal progressivity of income taxation in the U.S. The average tax rate is given by 1 − λw−τj
and the marginal tax rate is 1 − λ(1 − τ)w−τj . Taxes are proportional when τ = 0, in which case the

average rate is equal to the marginal rate and equal to λ. Under progressive taxes, τ > 0 and the

marginal rate exceeds the average rate.

A share of tax revenue is used for transfers. Of the total tax revenue, an amount φG is transferred to

the households. While there may well be city-specific differences in those federal transfers, we take the

agnostic view here that the transfer is lump sum across all agents. Therefore each household receives

the transfer TR = φG
L .

Equilibrium. We are interested in a competitive equilibrium where workers and firms take wages wj ,

6Of course, the ownership structure that equation (3) represents is a shortcut that bypasses the complications that
stem from ex post heterogeneity of asset holdings. Ideally we would like to explicitly model the ownership and trade of
housing assets in conjunction with the migration decisions. Unfortunately, that portfolio allocation problem is intractable
as it leads to high dimensional ex post heterogeneity.

7Of course, tax breaks from mortgage interest deductions as in the United States are likely to be higher in big cities
since households earn on average higher wages and spend the same share of their income on housing. But there is evidence
that such favorable tax treatment does not affect the home ownership rate in comparison with other countries. Ownership
rates are similar in Australia, Canada, and the United Kingdom, where there is no such tax deduction for mortgage
interest. In fact, the UK gradually abolished mortgage interest deduction between 1975 and 2000, a period in which home
ownership rose from 53% to 68%.
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housing prices pj and the rental price of land rj as given. The price of consumption is normalized

to one. Because housing capital is perfectly substitutable with consumption also the rental price of

housing capital is therefore also equal to one. All prices satisfy market clearing. Workers optimally

choose consumption and housing as well as their location j to satisfy utility equalization. Firms in

production and construction maximize profits, which are driven to zero from free entry.

3 The Equilibrium Allocation

Given prices and subject to after tax income, a representative worker in city j solves

max
{cj ,hj}

u(cj , hj) = ajl
δ
jc

1−α
j hαj (4)

subject to

cj + pjhj ≤ w̃j +Rj + TR,

for all j. Taking first order conditions, the equilibrium allocations are cj = (1−α)(w̃j +Rj + TR) and

hj = α
(w̃j+Rj+TR)

pj
.8 The indirect utility for a worker is

uj = ajl
δ
jα

α(1− α)1−α
(w̃j +Rj + TR)

pαj
. (5)

Optimality in the location choice of any worker-city pair requires that uj = uj′ for all j′ 6= j. The

optimal production of goods in a competitive market with free entry implies that wages are equal to

marginal product: wj = Ajγl
γ−1
j .

Optimality in the production of housing in each city j requires that construction companies solve

the following maximization problem:

max
Kj ,Tj

pjB[(1− β)Kρ
j + βT ρj ]1/ρ − rjTj −Kj .

This implies the optimal solution K?
j =

(
1−β
β rj

) 1
1−ρ

Tj . This, together with the zero profit condition

allows us to calculate the housing supply in each city, which in turn predicts a relation between the

rental price of land rj and the housing price pj .

Given housing supply, and taking the tax schedule as given, the optimal consumption decision will

determine the demand for housing. Market clearing then pins down the equilibrium housing prices pj .

This is summarized in the following Proposition.

8The construction firms buy capital from households. Since the price of capital is one, however, this transaction does
not affect the household budget constraint.
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Proposition 1 Given amenities aj, TFP levels Aj, and taxes tj, the equilibrium populations lj, allo-

cations cj , hj , Hj and prices w̃j , pj , rj are fully determined by:

aj
a1j

=
lδ1(w̃1 +R1 + TR)((w̃1 +R1 + TR)l1)

−αHα
1

lδj (w̃j +Rj + TR) ((w̃j +Rj + TR)lj)
−αHα

j

cj = (1− α)(w̃j +Rj + TR) and hj = α
(w̃j +Rj + TR)

pj

Hj = B

[
(1− β)

(
1− β
β

rj

) ρ
1−ρ

+ β

]1/ρ
Tj

w̃j = (1− tj)Ajlj

pj = rj

(
1 +

(
1−β
β

) 1
1−ρ

r
ρ

1−ρ
j

)
B

[
(1− β)

(
1−β
β rj

) ρ
1−ρ

+ β

]1/ρ
rj =

αlj(w̃j +Rj + TR)

Tj

(
1 +

(
1− β
β

) 1
1−ρ

r
ρ

1−ρ
j

)−1

for all j together with
∑J

j=1 lj = L, Rj = (1 − ψ)
∑
j rjTj∑
j lj

, TR = φG
L ,

∑
j tjwj = G, and

∑J
j=1 ljcj +

ψ
∑

j rjTj +
∑

jKj + (1− φ)
∑

j tjwj =
∑J

j=1 ljwj .

Proof. In Appendix.

This is a system of non-linear equations that we will solve and estimate computationally. With

exogenous housing production (β = B = 1) we have Hj = Tj and rj = pj . Now we turn to the optimal

policy by the planner.

4 The Planner’s Problem

As a benchmark, we start by showing that the first welfare theorem holds when there is no exogenous

government expenditure (G = 0), no externalities (δ = 0) and there is no concentration of housing

wealth (ψ = 0). This is the purpose of Proposition 2. In the absence of externalities, the decentralized

equilibrium allocation is efficient.

The whole objective of our exercise is to evaluate how the efficiency properties of equilibrium al-

location vary once we introduce distortions. We focus our attention on the Optimal Ramsey taxation

problem where the planner chooses tax instruments in order to affect the equilibrium allocation. The

planner assumes agents operate in a decentralized economy with equilibrium prices and free choice of

consumption and location decisions, albeit affected by a city-specific tax tj where w̃j = (1 − tj)wj .

Consider now a Utilitarian planner who chooses the tax schedule {tj} to maximize the sum of utilities
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subject to: 1. the revenue neutrality constraint, i.e. she has to raise the same amount of tax revenue;

2. individually optimal choice of goods and housing consumption in a competitive market; and 3. free

mobility – utility across local markets is equalized.

As in the case of the equilibrium allocation, the utility given optimal consumption (c, h) in a local

labor market is given by (5). Then we can write the Ramsey planner’s problem as:

max
{tj}

∑
j

ujlj ,

subject to
∑

j Ajtjlj = G, uj = uj′ , ∀j′ 6= j, and
∑

j lj = L.
The solution to this problem involves solving a system of J + J + 2 equations (J FOCs and J + 2

Lagrangian constraints) in the same number of variables. We cannot derive an analytical solution, so

we will characterize the optimal tax schedule from simulating the US economy in the next section.

Analytically, we can only explicitly analyze a simple economy with two cities, no government spending,

a degenerate wealth distribution (ψ = 0) and one specific type of preferences. This gives us the following

equivalence result:9

Proposition 2 Let there be a two city economy with β = 1, δ = 0, aj = 1 and preferences u(c, h) = c ·h.

If there is no government expenditure G = 0 and there is no concentration of housing wealth ψ = 0,

then the decentralized equilibrium allocation and the Ramsey planner’s optimal allocation coincide.

Proof. In Appendix.

While this special case provides us with a reference for the case without government expenditure

(G = 0) and no concentration of housing wealth (ψ = 0), it does not give any insights into the role of

G and ψ on taxes across locations. For that purpose, we simulate the optimal solution to the Ramsey

problem for a two-city example. We obtain two results from this simulation:

1. as government expenditure G increases, relative taxes in big cities decrease (while all taxes in-

crease);

2. as housing wealth concentration ψ increases, relative taxes in big cities increase.

As government expenditure G increases, the planner faces a tradeoff in setting different taxes in big

cities relative to small cities: higher taxes in more productive cities generate bigger revenue per person,

but attracts fewer workers, and hence leads to a smaller tax base. We find that it is optimal to increase

the base in more productive cites: as G increases, the planner taxes those in highly productive city less

to make sure that there are enough of them to pay for G.

9We are grateful to John Kennan for pointing us to this equivalence.
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Figure 1: Optimal Ramsey taxes given G in a two city example with a fraction ψ of housing wealth
concentration (ψ = 0.65): A1 = 1, A2 = 2,L = 100, α = 0.31: A. Optimal tax rates t1, t2; B. populations
l1, l2; C. Output Y and output net of government expenditure Y −G.

The result is therefore that relative taxes in big cities decrease as G increases (Figure 1.A). This

implies a divergence of the population distribution as the large city becomes larger (Figure 1.B): higher

government spending goes together with bigger population differences between small and large differ-

ence. That of course implies that output increases in government expenditure since more people live in

more productive city, but the output net of government expenditure is decreasing (Figure 1.C).

Taxes in big cities are also affected by the concentration of wealth. A workers locate to big cities,

housing prices also increase. As a result, the value of housing that goes to the absentee landlords

increases as well. Since the planner does not value the consumption of these absentee landlords, when

ψ is high, the optimal taxes in big cities increase relative to those in small cities. The output gains

from having more people in productive cities disappear in the pockets of the landowners the planner

does not care about. In contrast, for low ψ, the value of housing benefits a larger fraction of households

who hold a diversified bond on the economy wide available land. This is illustrated in Figure 2.10

One could ask what the optimal solution is when the planner is not constrained by mobility of

workers. This implies that she can assign workers to cities even if the utility obtained in different

cities is not equalized. We analyze this case in detail in the Appendix. What transpires from this is

that the unconstrained planner wants to locate a lot of agents in the big cities. There they are very

productive, but given housing constraints, they consume little housing and will as a result have a low

marginal utility. The planner therefore assigns a lot of consumption to the few workers in the small,

10In Figure 1, we set the fraction of land owned by measure zero landlords, ψ, to 0.65, the value we use in the quantitative
analysis below. Similarly, in Figure 2, G is 16% of output, again close to the value we use in the quantitative analysis.
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Figure 2: Optimal Ramsey taxes given ψ in a two city example given government expenditure (G = 30,
16% of total output): A1 = 1, A2 = 2,L = 100, α = 0.31: A. Optimal tax rates t1, t2; B. populations
l1, l2; C. Output Y and output net of government expenditure Y −G.

unproductive city. There they have a lot of housing and a high marginal utility. This planner’s solution

has big ex post inequality in utility.

5 Quantifying the Optimal Spatial Tax

We now quantify the magnitude of spatial misallocation. We proceed in following steps: First, given

the U.S. data on the distribution of labor force across cities (lj) and wages in each city (wj), we back

out the productivity parameters Aj . Second, given (lj , wj), a representation of current US taxes on

labor income, (λUS , τUS), and land area of each city (Tj), we compute aj values under the assumption

that the current allocation of the labor force across cities is an equilibrium, i.e. utility of agents are

equalized across cities. Third, for any given τ 6= τUS , we compute the counterfactual distribution of

labor force across cities. In these counterfactuals, we assume revenue neutrality, and for any τ , find the

level of λ such that the government collects the same amount of revenue as it does in the benchmark

economy. Finally, we find the level of τ that maximizes welfare.
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5.1 Labor Force and Wages

The data on the distribution of labor force across cities (lj) and wages in each city (wj) are calculated

from 2010 American Community Survey (ACS). For 279 Metropolitan Statistical Areas (MSA), we

compute lj as the population above age 16 who are in the labor force. We calculate wj as weekly

wages, i.e. as total annual earnings divided by total number of weeks worked.11 Figure 13.A and B in

the Appendix show the distribution of population and wages across MSAs. The average labor force is

432,523, with a maximum (New York-Northern New Jersey-Long Island) of more than 9 million and

a minimum (Gadsden, AL) of about 44,195. The population distribution is highly skewed, close to

log-normal, where the top 5 MSAs account for 22.4% of total labor force.12 Average weekly wages are

$831. The highest weekly wage is more than twice as high as the mean level (Stamford, CT) and the

lowest is 64% of the mean level (Laredo, TX). Figure 3 shows the positive relation between population

size and wages, the well-known urban wage premium in the data. We take both population and wage

date as inputs to simulate the benchmark economy. The elasticity of wages with respect to population

size is about 0.07. In Figure 3, as well as in all other figures below, we indicate the ten largest MSA’s

together with the MSA’s with the highest and lowest average wages.

new york, ny-northeastern nj

atlanta, gaatlantic city, nj

boston, ma/nh

chicago, il
dallas-fort worth, tx

danbury, ct

flint, mi

houston-brazoria, tx

laredo, tx

los angeles-long beach, ca

miami-hialeah, fl

philadelphia, pa/nj

san francisco-oakland-vallejo, ca

san jose, ca

stamford, ct

washington, dc/md/va

.5
1

1.
5

2
W

ag
es

11 12 13 14 15 16
Log (Population)

Figure 3: The Urban Wage premium.

11We remove wages that are larger than 5 times the 99th percentile threshold and less than half of the 1st percentile
threshold.

12The five largest MSAs are New York, NY-Northeastern NJ; Los Angeles-Long Beach, CA; Chicago, IL; Dallas-Fort
Worth, TX; and Washington, DC/MD/VA.
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5.2 Taxes

As we mentioned above, we assume that the relation between after and before tax wages are given

by w̃ = λw1−τ , where λ is the level of taxation and τ indicates the progressivity (τ > 0). In order

to estimate λ and τ for the US economy, we use the OECD tax-benefit calculator that gives the gross

and net (after taxes and benefits) labor income at every percentage of average labor income on a range

between 50% and 200% of average labor income, by year and family type.13 The calculation takes

into account different types of taxes (central government, local and state, social security contributions

made by the employee, and so on), as well as many types of deductions and cash benefits (dependent

exemptions, deductions for taxes paid, social assistance, housing assistance, in-work benefits, etc.).

Non-wage income taxes (e.g., dividend income, property income, capital gains, interest earnings) and

non-cash benefits (free school meals or free health care) are not included in this calculation.

We simulate values for after and before taxes for increments of 25% of average labor income. As

the OECD tax-benefit calculator only allows us to calculate wages up to 200% of average labor income,

we use the procedure proposed by Guvenen, Burhan, and Ozkan (2014) and detailed in Appendix, to

calculate wages up to 800% of average labor income. As a benchmark specification, we calculate taxes

for a single person with no dependents. Given simulated values for wages, we estimate a simple OLS

regression

ln(w̃) = ln(λ) + (1− τ) ln(w).

The estimated value of τUS is 0.120. Estimating the same tax function with the U.S. micro data on

taxes from the Internal Revenue Services (IRS), Guner, Kaygusuz, and Ventura (2014) estimate lower

values for τ, around 0.05. Their estimates, however, are for total income while the estimates here are for

labor income. One advantage of the OECD tax-benefit calculator, compared to the micro data is that

it takes into account social security taxes, which is not possible with the IRS data. Our estimates are

closer to the ones provided by Guvenen, Burhan, and Ozkan (2014) who also use the OECD tax-benefit

calculator to estimate tax rates using a more flexible functional form. Below we report results with

Guner, Kaygusuz, and Ventura (2014) estimates for τ as a robustness check.

The parameter λ determines the average level of taxes. We set λUS = 0.85, i.e. on average taxes are

about 15% of GDP in the benchmark economy. This is the average value for sum of personal taxes and

contributions to government social insurance program as a percentage of GDP for 1990-2010 period.14

Hence at mean wages (w = 1), tax rate is 15%. Tax rates at w = 0.5, w = 2 and w = 5 are 7.6%, 21.8%

and 30.0%, respectively. With w2 = 2.5 and w1 = 0.5, our estimates imply a progressivity wedge of

0.176, defined as 1− 1−t(w2)
1−t(w1)

where t(wi) is the tax rate at income level wi.
15

13 http://www.oecd.org/social/soc/benefitsandwagestax-benefitcalculator.htm, accessed on March 15, 2013.
14 National Income and Product Accounts, Bureau of Economic Analysis, Table 3.2. Federal Government Current

Receipts and Expenditures, http://www.bea.gov/iTable/index nipa.cfm
15Guvenen, Burhan, and Ozkan (2014) estimate a progressivity wedge of 0.15. Given the particular tax function we

are using, the progressivity only depends on τ.
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Figure 4 shows what our representation of the effective Federal Taxes in the US implies for how tax

rates differ across cities. In the benchmark economy, each wage level, and as a result each tax rate,

corresponds to a city. The average tax rate in San Jose, CA, for example, is almost 10% points higher

than it is in Laredo, TX.
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Figure 4: Taxes across cities

Finally, since the share of defense expenditure in the Federal Government’s budget is 18% in the

US, we assume that the rest, 82% of taxes, is rebated back to households, i.e. TR = 0.82GT .
16

5.3 Housing Production

The CES housing supply technology basically stipulates that the cost of construction of housing is

increasing in the size of the house, but at a (weakly) decreasing rate. If housing capital and land are

complements (the elasticity of substitution is less than one), then the housing cost is decreasing in the

size of the house. For example, small apartments still need a bathroom and a kitchen, so the unit cost

per square meter is higher, or, it is more expensive per unit of housing to build a high-rise than a stand

alone home. The implication of this is that the share of land in the value of housing is increasing in the

population density, as transpires from the data.

The data on land areas of cities (MSAs), Tj , is taken from the Census Bureau.17 Average land

16National Income and Product Accounts, Bureau of Economic Analysis, Table 3.16. Government Current Expenditures
by Function, http://www.bea.gov/iTable/index nipa.cfm

17We use data available at https://www.census.gov/population/www/censusdata/files/90den ma.txt and published in
U.S.Census.Bureau (2004).
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area of MSAs is about 5254 km2 and there is very large variation in land areas across MSA.18 The

largest MSA in terms of land areas is huge with 70630 km2 (Riverside-San Bernardino,CA) while the

smallest one has and area of only 312 km2 (Stamford, CT). Albouy and Ehrlich (2012) document that

the share of land in housing is about one-third on average across MSAs and it ranges from 11% to 48%.

We set β = 0.235 and ρ = −0.2 to match these two targets in the benchmark economy. Finally, we set

B = 0.028 such that on average housing consumption is about 200m2.

5.4 Land Ownership

To determine the share of total land owned by the absentee landlords, ψ, we use the following information

on the concentration of housing wealth. First, according to Mishel, Bivens, Gould, and Shierholz (2012),

about 12.6% of the housing equity is owned by the top 1% of the wealthy individuals in the US in 2010.

Furthermore, Mishel, Bivens, Gould, and Shierholz (2012) also report that in 2006, just before the recent

financial crisis, the homeowner equity as a share of total home values was about 60%. We assume that

the ownership of the remaining 40%, i.e. debt, is also concentrated. Hence, about 52% of total housing

value, 40% of 87.4%, enters into planner’s objective function. Finally, only 67% of households own a

house in the US between 2000 and 2010.19 Therefore, we set 1− ψ to be 35% (67% of 52.4%). Hence

in the model economy about 65% of land is owned by measure zero landlords and 35% is owned in

equal shares by each worker in the economy in the form of a bond that is a diversified portfolio of the

country’s land supply.

5.5 Preferences and Productivity

As we mentioned above, we set γ = 1 and calculate productivity level in each city as

Aj = wj ,∀j.

Then, we calculate amenities aj from utility equalization condition across cities. Given the indirect

utility function in equation (5), for any two locations j and j′, the following equality must hold:

uj = aj [(1− α)1−α](w̃j +Rj + TR)1−αlδ−αj Hα
j

= aj′ [(1− α)1−α](w̃j′ +Rj′ + TR)1−αlδ−αj′ Hα
j′

= uj′

18Figure 14 in the Appendix shows the distribution of land across MSAs.
19US Census Bureau Table 5. Homeownership Rates for the United States: 1968 to 2014, available at

http://www.census.gov/housing/hvs/data/q314ind.html
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Let a1 = 1. Then,

aj =
(w̃1 +R1 + TR)1−αlα−δj Hα

1

(w̃j +Rj + TR)1−αlα−δ1 Hα
j

(6)

=

(w̃1 +R1 + TR)1−αlα−δj

[
(1− β)

(
1−β
β r1

) ρ
1−ρ

+ β

]α/ρ
(w̃j +Rj + TR)1−αlα−δ1

[
(1− β)

(
1−β
β rj

) ρ
1−ρ

+ β

]α/ρ

Calculations for aj obviously depend, among other parameters, on the values we assume for α and δ.

We set α = 0.319. Davis and Ortalo-Magné (2011) estimate that households on average spend about 24%

of their before-tax income on housing. This would translate to a spending share of α/λ = 0.24
0.85 = 0.2824

from after-tax income at mean income (w = 1).

We interpret the congestion term l−δ in the utility as commuting costs and calibrate it using

the available evidence on the relationship between city size and commuting costs. The elasticity of

commuting time with respect to city size is estimated to be 0.13 by Gordon and Lee (2011). Average

commuting time in the US is about 50 minutes (McKenzie and Rapino (2011)). Assuming a 20$ hourly

wage, this 50 minutes costs about 17$ for households, which is about 11% of their daily income (17/160).

Commuting also has a monetary cost. Roberto (2008) reports that households on average spend about

5% of their income on transportation expenditures, while Lipman et al. (2006) find these costs to be

higher, close to 20%. If we take 10% as an intermediate value, then the total, time and money, cost of

travel for households is about 20% of their income, which is simply the elasticity of the total commuting

costs with respect to the commuting time. As a result, the elasticity of total commuting costs with

respect to city size, which is the elasticity of the total commuting costs with respect to the commuting

time times the elasticity of commuting time with respect to the city size is (0.13)(0.2) = 0.026.20

5.6 Benchmark Economy

In Figure 5.A we report the computed values of aj across metropolitan statistical areas. We set a1 = 1

for New York-Northeastern NJ MSA. The mean value of aj across MSAs is also about 0.9. The highest

levels of aj , above 1.1, are calculated for Chicago (IL), Los Angeles-Long Beach (CA) and Miami-Hialeah

(FL). The calibration procedure assigns a high value of a for Chicago (IL) and Los Angeles-Long Beach

(CA) to account for their large size. On the other hand, a relatively low productivity city like Miami-

Hialeah (FL), with averages wages that are about 85% of the national average, also requires a high a

20In this paper, we assume each city has a different, exogenously given, land area and there is congestion. An alternative
strategy would be to endogenize land area by capturing the cost of commuting, for example as in Combes, Duranton, and
Gobillon (2013), in the presence of a central business district. However, in our model there is no within city heterogeneity,
and commuting costs are captured by the congestion externalities in utility, rather than in housing production. As we
show in section 6, incorporating the exact land area in the model is an important ingredient to fit the data.
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to justify its size, which possibly reflects better weather conditions.

The lowest values are below 0.7, for Stamford (CT), Anchorage (AK) and Flagstaff (AZ/UT).

Stamfod (CT) and Anchorage (AK) are MSAs with high wages but with small populations and low

values of a are assigned to justify why more people are not living there. The figure shows the relation

between population and amenities adjusted for congestions, i.e. al−δ, across MSAs in the benchmark

economy. The correlation between amenities and population size is about 0.14, which is in line with

the findings of Albouy (2008) who finds no correlation between amenities and population size.

Panel B in Figure 5 shows the relation between population size and the share of land values in

housing prices, which we use as a target to calibrate housing production technology.

The benchmark economy generates a distribution of equilibrium housing prices across MSAs. Es-

timated housing prices are about 405 per km2 in San Francisco-Oakland-Vallejo (CA), followed by

Stamford (CT) and Chicago (IL) where housing prices are 379 and 372, respectively. The lowest hous-

ing prices are computed for Flagstaff (AZ-UT), 31, and Yuma (AZ), 46. While housing consumption

is about 200m2 across MSA, those in Chicago live in houses that are about 86m2 and about 9 times

smaller than houses in Flagstaff (AZ-UT). Panel C in Figure 5 shows the relation between population

size and housing prices across MSAs in the benchmark economy. The figure implies an elasticity of

housing prices with respect to population size that is about 0.23.

Finally, Figure 6 compares housing prices from the benchmark economy with actual housing prices.

It is important to note that we do not target directly actual housing prices in our calibration. In the

model economy, housing is a homogenous good with a location specific per unit price pj . In the data, on

the other hand, housing differs in many observable dimensions, and as a result, observed housing prices

reflect both the location and the physical characteristics of the unit. We follow Eeckhout, Pinheiro,

and Schmidheiny (2014), and estimate the city specific price level as a location-specific fixed effect in a

simple hedonic regression of log rental prices on the physical characteristics, such age number of rooms,

age of the unit, and the units structure (one family detached unit vs. one family attached unit etc.).21

For both the model and the data, we report prices in each city as a fraction of average prices across

all cities. The model does a very good job capturing variation in housing prices in the data. The

correlation between the model-implied and actual prices is about 60%. The variance of housing prices

in the model economy is higher than it is in the data.

5.7 Optimal Allocations

Given values for Aj and aj , the next step is to find counterfactual allocations for any level of τ 6= τUS .

This is done simply by first writing equation (6) as

21We use 2010 American Community Survey (ACS) data on housing rentals and housing characteristics.

17



New York-Northeastern NJ

Brownsville-Harlingen-San Benito, TX

Danbury, CT

Flint, MI

Laredo, TX

Las Cruces, NM

Muncie, IN

San Francisco-Oakland-Vallejo, CA

San Jose, CA

Stamford, CT

Sumter, SC

Washington, DC/MD/VA

.1
5

.2
.2

5
C

on
ge

st
io

n 
A

dj
us

te
d 

A
m

en
iti

es

11 12 13 14 15 16
Log (Population)

new york, ny-northeastern nj

atlanta, ga

atlantic city, nj

boston, ma/nh

chicago, il

dallas-fort worth, txdanbury, ct

flint, mi

houston-brazoria, tx

laredo, tx

los angeles-long beach, ca

miami-hialeah, fl

philadelphia, pa/nj

san francisco-oakland-vallejo, ca

san jose, ca

stamford, ct

washington, dc/md/va

.2
.2

5
.3

.3
5

.4
.4

5
La

nd
 S

ha
re

11 12 13 14 15 16
Log (Population)

new york, ny-northeastern nj

atlanta, ga

atlantic city, nj

boston, ma/nh

chicago, il

dallas-fort worth, txdanbury, ct

flint, mi

houston-brazoria, tx

laredo, tx

los angeles-long beach, ca

miami-hialeah, fl

philadelphia, pa/nj

san francisco-oakland-vallejo, ca

san jose, ca

stamford, ct

washington, dc/md/va

0
10

0
20

0
30

0
40

0
H

ou
si

ng
 P

ric
es

11 12 13 14 15 16
Log (Population)

Figure 5: Benchmark Economy. A. Amenities and Population; B. Land Share in the Value of Housing
and Population; C. Housing Prices and Population.

aj =

(λw1−τ
1 +R1 + TR)1−αlα−δj
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(1− β)
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) ρ
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which can be used to calculate new allocations for any τ

lj(τ) = l1(τ)[a
1

α−δ
j (

λw1−τ
j +Rj + TR

λw1−τ
1 +R1 + TR

)
1−α
α−δ (
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(
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) ρ
1−ρ

+ β
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(
1−β
β r1

) ρ
1−ρ

+ β

)

(
α
ρ

)
1

α−δ ].

where lj(τ) is the counterfactual allocation for tax schedule τ .

We want the counterfactual to be revenue neutral, so for each τ we find a value of λ such that the
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government collects the same tax revenue as it does in the benchmark economy, i.e.

∑
j

lj(τ)wj(τ)(1− λw−τj ) =
∑
j

ljwj(1− λUSw−τ
US

j ).

Finally, we find the value of τ that maximizes the welfare. Figure 7 shows the percentage change

in utility from the benchmark economy for different values of τ . The optimal value τ?, is 0.0139.

The optimal τ? is less than τUS , i.e. taxes in big cities should be lower than those implied by the

progressiveness of observed income taxes. However, the optimal τ is not zero. While τ = 0 results in

larger movements of population to more productive cities and results in larger output gains, it does not

necessarily maximize consumer’s utility as consumers are hurt by higher housing prices in larger cities.

Figure 7 shows the implied tax schedule under (λUS , τUS) and (λ?, τ?). While, given the particular tax

function we use, tax rates for w = 1 are identical under two sets of parameters, tax function is more

flat with (λ?, τ?). As a result, for w = 0.5, w = 2 and w = 5, the tax rates are 14.2%, 15.8% and 16.9%,

respectively.

Now we can evaluate the implications of a tax change in the tax schedule from τUS to τ?, both for

individual cities and in the aggregate. Consider first the impact on individual cities which is summarized

in Figure 8 and Table 1. The table gives the numerical values for those cities with extreme values either

for TFP A or for amenities a.22

22All our results are robust and change very little if we remove Stamford CT from the sample.
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Figure 7: A. Welfare gain for different values of τ ; B. The optimal tax schedule τ? compared to that in
the benchmark economy τUS .

Since the optimal degree of tax difference τ? is below existing τUS , the optimal policy lowers tax

payments in high productivity cities. Figure 8.A. shows that the high A cities grow in size while the

low productivity A cities loose population. The largest population growth rate, for Stamford (CT), is

more than 40% whereas Laredo (TX) looses 25% of its population. As is apparent in Figure 8.B., in

contrast with productivity, there is no systematic relation between amenities and population change.

The economic mechanism that drives the population mobility is the following. Due to lower

marginal taxes, more productive cities pay higher after tax wages (Figure 8.C). This in turn attracts

more workers relative to the benchmark equilibrium with τUS . The new equilibrium is attained when

utility across locations equalizes. The main countervailing force that stops further population mobility

against the attractiveness of higher after tax wages is housing prices. Figure 8.D shows the change in

housing prices. High productivity cities are up to 24% more expensive while low productivity cities

face housing price drops of up to 9%.

Figure 9 shows the distribution of output and price changes across MSAs. Output in some MSAs

grows as much as 40% while in others it declines by 25%. Output declines in the majority of MSAs,

as many small MSAs loose population. Few productive, and large, MSAs on the other hand gain

population. The distribution of changes in prices reflects the same forces. Prices decline in many small

MSAs, and increase in few large ones.

Of course with higher housing prices goes substitution of housing for consumption. In the high

productivity cities, workers live in even smaller housing while increasing goods consumption. Housing

consumption decreases by more than 5% in the high productivity cities in substitution for nearly 4%

higher goods consumption. In the less productive cities housing consumption increases by up to 6% at

the cost of decreased goods consumption by 3%. Given homothetic preferences, the marginal rate of

substitution is constant (see Figure 10.A).
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Figure 8: Implied changes of implementing the optimal policy τ?. A. Change in population by TFP;
B. Change in population by a; C. Change in w̃ by TFP; D. Change in housing prices p by TFP.
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Figure 9: Distribution of changes: A. Ouput; B. Housing Prices.

Table 2 shows the aggregate outcomes from moving the benchmark allocation to the optimal. On

average output and consumption go up by about 1.42% and 1.51%, respectively. This is driven by
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Table 1: Benchmark Economy, move from τUSA to τ?. Outcomes for Selected Cities.

MSA A a %∆l %∆p %∆c %∆h

Highest A
Stamford, CT 2.05 0.67 42.17 24.39 7.41 -13.65
San Jose, CA 1.46 0.79 22.43 11.73 3.80 -7.10
Danbury, CT 1.42 0.69 22.79 10.79 3.56 -6.52

Lowest A
Brownsville, TX 0.65 1.08 -20.94 -9.20 -3.21 6.59

Flint, MI 0.65 1.03 -21.87 -9.27 -3.26 6.62
Laredo, TX 0.64 0.92 -25.53 -9.08 -3.33 6.33

Highest a
Chicago, IL 1.07 1.20 4.08 2.49 0.87 -1.58

Los Angeles-Long Beach, CA 1.03 1.16 2.27 1.34 0.51 -0.82
Miami-Hialeah, FL 0.84 1.12 -7.66 -3.89 -1.25 2.75

Lowest a
Anchorage, AK 1.20 0.68 13.51 5.42 1.91 -3.33

Stamford, CT 2.05 0.67 42.17 24.39 7.41 -13.65
Flalgstaff, AZ/UT 0.79 0.67 -18.24 -4.51 -1.74 2.90

the population moving to the more productive cities. The population in the 5 largest cities grows by

7.62%, despite the fact that the top three are large in part because they also offer high amenities a.

Most importantly, in the aggregate there is a reallocation of population from less productive, smaller

cities to the more productive, larger cities. As a result there is first-order stochastic dominance in the

population distribution, as is evident from Figure 10.B. Not surprisingly, aggregate housing prices go

up by 5.20%. Due to higher prices, aggregate housing consumption declines by 1.70%.

Despite relatively large output gains, welfare gains are tiny. Given free mobility and a represen-

tative agent economy, all agents have the same utility level. After implementing the optimal policy,

utility increases by 0.072%, almost nothing. The reason for such tiny welfare gains is quite simple.

Under the optimal taxes, after tax wages in cities that have initially high productivity increases. These

cities, however, also get more crowded and housing prices goes up. With higher prices, housing con-

sumption in these cities declines. True, from substitution of goods for housing, this generates higher

goods consumption. However, the welfare gains associated with higher goods consumption get almost

completely offset by lower housing consumption.
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Table 2: Benchmark Economy, move from τ to τ?

Outcomes

Welfare gain (%) 0.072 0
Output gain (%) 1.42
Consumption (%) 1.51
Housing Consumption (%) -1.70
Population change top 5 cities (%) 7.62
Fraction of Population that Moves (%) 3.44
Change in average prices (%) 5.20

6 Understanding the Mechanism

In this section, we discuss how sensitive our results are to different aspects of our modeling and cal-

ibration choices. First, we focus on two model parameters that play a critical role in determining

the optimal level of tax differences across cities: the initial level of government spending (λ) and the

concentration of housing ownership (ψ). Next, we show how our results change if we introduce agglom-

eration economies. Finally, we discuss several model features that do not matter qualitatively but play

some role quantitatively. In particular, we show how our results change if in the calculation of wages

we control for observable worker characteristics (such as education, age, gender and race) and use a

measure of residual wages, if all cities have an equal amount of land (i.e. Tj = T for all j), if there is

no housing production and households simply consume land (i.e. B = β = 1), and if the amount of tax

revenue that is transferred back to individuals is zero (i.e. φ = 0).
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6.1 What Matters Qualitatively and Quantitatively

6.1.1 The Initial Level of Government Spending

Based on the evidence for the US economy, we have chosen parameter values for λ and τ that are

most plausible. The total tax revenue is given by 1 − λ. Our value for the tax revenue of 15%

(λ = 0.85) includes income tax as well as social security taxes. Instead, we could exclude social security

contributions in which case tax revenues would be around 10% (λ = 0.9). Or we could instead allow for

the whole tax revenue including corporate and other taxes not related to labor income, in which case

tax revenue is 18.5%.23

Similarly, to calculate the progressivity, our preferred value of τ = 0.12 reflects taxes on labor income

based on the OECD tax calculator. Instead, we could have focused on total household income from the

IRS micro data that includes income on assets. Considering both taxes paid and Earned Income Tax

Credits (EITC) refunds received by the households, Guner, Kaygusuz, and Ventura (2014) estimate a

lower progressivity, τ = 0.053, for all households. Their estimates for married households with children,

who are much more likely to benefit EITC, imply a higher progressivity, τ = 0.2.

For these nine parameter combinations, we repeat the same exercise, the results of which are reported

in Table 3. For each of the nine combinations we report: the optimal progressively τ?, the change in

welfare, the changes in output, consumption and housing consumption, the change in population of the

top 5 cities, the fraction of movers in the entire economy, and the average housing price change.

Table 3: Different initial levels of average taxes and progressivity.

λ = 0.9 λ = 0.85 λ = 0.815
τ 0.053 0.12 0.2 0.053 0.12 0.2 0.053 0.12 0.2

Optimal τ∗ 0.0604 0.0641 0.0690 0.0097 0.0139 0.0189 -0.0286 -0.0245 -0.0188
Output gain (%) -0.10 0.78 1.84 0.57 1.42 2.44 1.05 1.88 2.87
Consumption (%) -0.11 0.82 1.93 0.61 1.51 2.60 1.12 2.01 3.07
Housing Consumption (%) 0.12 -0.92 -2.24 -0.67 -1.70 -3.00 -1.24 -2.27 -3.55
Pop top 5 (%) -0.55 4.20 9.84 3.08 7.62 13.03 5.63 10.04 15.40
Pop moves (%) 0.25 2.78 6.82 1.40 3.44 5.87 2.55 4.53 6.86
Avg. prices (%) -0.35 2.78 6.81 2.03 5.20 9.29 3.79 7.00 11.10
Welfare gain (%) 0.0004 0.0217 0.1186 0.0119 0.0720 0.2086 0.0401 0.1254 0.2878

The most important thing to observe is that as government spending increases (λ decreases), τ∗

decreases and optimal taxes becomes relatively lower in bigger cities. As a result, a smaller government

(λ = 0.9) implies relatively higher taxes in larger, more productive cities (τ∗ ranges from 0.06 to almost

0.07 depending on the initial level of τ), while a larger government (λ = 0.815) results in taxes that are

indeed lower in larger, more productive cities (τ∗ ranges from -0.02 to almost -0.03 depending on the

initial level of τ).

23Source: National Income and Product Accounts (NIPA) Table 3.2. - Federal Government Current Receipts and
Expenditures.
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The results in Table 3 indicate that while the initial level of τ does not change the level of optimal

dramatically, it does have an important effect on output and as a result welfare. Observe also the

impact on output. If progressivity is low to start with, and government spending is low (the combination

τ = 0.053, λ = 0.9), then optimality demands more progressivity and as a result, a decrease in output.

But output changes are of course biggest when the actual progressivity is high (τ = 0.2). The optimal

progressivity is much lower which leads to huge gains in output, up to 3% of GDP. And this goes

together with enormous changes in population (up to 11% increase in the top 5 cities) as well as big

increases in average housing prices. Even in these extreme cases, the effect on welfare remains mild,

precisely because the output gains go hand in hand with increases housing prices.

6.1.2 The Concentration of Housing Ownership

In the benchmark economy, we have modeled ownership of housing as a mixture between a fraction of

housing held by households in the form of a perfectly diversified bond and the remainder (ψ) held by a

zero measure of landlords. The landlords are supposed to capture the degree of concentration of housing

ownership. Those in small cities typically own less valuable housing, thus violating the notion that all

households hold an equal (and diversified) portfolio of housing. Now suppose instead that this were

nonetheless the case and there are no zero measure landlords (ψ = 0). We know then that the outcome

with zero government expenditure will generate no tax difference and with positive G taxes will be

lower in big cities. This is indeed the case as can be seen in Table 4. The optimal tax has τ = −0.1378

which is more than 10 percentage points lower than the benchmark and 25 percentage points below the

current US tax. Not surprisingly, the impact on housing, population and prices is larger: output goes

up by nearly 3.1%, the population in the top 5 cities grows by 17% and average housing prices increase

by 12.7%. While the welfare effects are substantially higher, they are still relatively small.

Table 4: Different Fractions of Zero Measure Landlords (ψ).

Outcomes Benchmark All Bond All Landlords
ψ = 0.65 ψ = 0 ψ = 1

Optimal τ 0.0139 -0.1378 0.0776
Output gain (%) 1.42 3.17 0.59
Consumption (%) 1.51 3.61 0.61
Housing Consumption (%) -1.70 -3.90 -0.70
Pop. change top 5 cities (%) 7.62 17.22 3.20
Frac. of Pop. that Moves (%) 3.44 7.52 1.45
Change in average prices (%) 5.20 12.67 2.08
Welfare gain (%) 0.0720 0.3386 0.0132

Instead at the polar opposite, if housing is fully concentration in the hands of zero measure landlords

(ψ = 1), then taxes in big cities will be substantially higher. The concentrated ownership of housing
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does not affect labor productivity and raises no tax revenue. Now there is a tradeoff between attracting

more workers to productive cities and loosing revenue due to the fact that housing in big cities is more

expensive. The planner resolves this with a higher tax on big cities and as a result the optimal τ is

positive. For our economy, it is equal to τ = 0.0776, which is still lower than than τUS . The effects on

output and migration is now much more muted.

6.1.3 Agglomeration Economies

There is a large empirical literature in urban economics that documents the extent of agglomeration

economies in cities. Rosenthal and Strange (2004), Duranton and Puga (2004), Combes, Duranton,

and Gobillon (2013) and Combes and Gobillon (2015) provide reviews of the recent papers that find

elasticities of city level productivity with respect to the city size on the order of 0.03 to 0.08.

In this section, we introduce agglomeration economies as an externality in the production function.

We assume that the production is given by F (lj) = (Ajl
η
j )lj , where the lηj term captures the level of

agglomeration economies. Competitive firms still choose lj to maximize profits, taking as given the

externality (Ajl
η
j ). The resulting wage rate is now given by wj = Ajl

η
j , where η is the elasticity of wages

with respect to the city size. As in Section 5, we use data on wages and the size of the work force

across MSAs to estimate Aj and η, and then repeat our main quantitative exercise.24 Since given lj ,

we estimate Aj and η to fit the observed wages, wj , in each city, the allocations in the economy with

agglomeration externalities are identical to ones in the benchmark economy. The planner problem, on

the other hand, now takes into account the fact that a larger workforce in a given city has a positive

effect on average wages there.

Table 5: Agglomeration Economies

Outcomes Benchmark Aggl. Econ.

Optimal τ 0.0139 -0.0517
Output (%) 1.42 4.31
Consumption (%) 1.51 4.58
Housing Consumption (%) -1.70 -5.00
Pop. change top 5 cities (%) 7.92 20.65
Frac. of Population that Moves (%) 3.44 9.14
Change in average prices (%) 5.20 15.47
Welfare gain (%) 0.0720 0.3129

Table 5 shows the aggregate outcomes for an economy with agglomeration externalities. The planner

chooses a regressive tax schedule, i.e. taxes decline in city size, since there is now an extra external

benefit of allocating workers to productive cities. As a result, the share of population in the largest five

24The estimated value of η is about 0.07.
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MSAs grows by more than 20% and the resulting reallocation of labor generates a significant output

gain that is higher than 4%.25

6.2 What Does Not Matter Qualitatively

For the next set of variations we show that there is no qualitative change in our conclusions, even if

there are quantitative differences worth pointing out.

6.2.1 Controlling for Worker Heterogeneity in Wage Calculations

While the model economy is populated by identical workers, average wages in each MSA in the data

reflects several permanent worker characteristics, such as education. If more educated workers sort

themselves into more productive cities, then higher average wages in more productive cities would

partly be due to higher average human capital of workers in these cities. In order to mitigate this

problem, we redo our quantitative exercise using residual average wages for each MSA that controls

for workers’ education, age, gender and race.26 As Table 6 shows, with residual wages the optimal

level of τ is 0.0237, slightly higher than the optimal level of τ for the benchmark economy. Hence the

planner chooses a slightly higher level of progressivity when we use residual wages. This happens as

wage differences across MSA is more muted and the potential gains from reallocating workers across

MSAs is smaller when wages are calculated net of worker characteristics.27

6.2.2 An Economy with Identical Land Areas

In the benchmark economy land areas across cities differ as they do in the data. Consider now an

economy, in which each city has the average land area in the data, about 5000 km2. The economy with

identical land areas looks very similar to the benchmark economy with different land areas, with one

important exception. An economy with equal land areas across cities is not able to generate housing

price differences across MSAs that are consistent with the data. Figure 11.B shows the housing prices

in the model when each city has the same amount of land. In addition and in contrast to the benchmark

economy (see Panel C in Figure 5), the relation between city size and housing prices is nearly perfectly

correlated.

The optimal level of τ is 0.0247 for an economy with equal sized cities, while it was 0.0145 for the

benchmark economy. Hence, the optimal level of tax in big cities is lower under the benchmark with the

25Changing the congestion externality parameter has qualitatively similar effects as the introduction of agglomeration
externalities since the functional form is the same. Congestion externalities however are tiny compared to the agglomeration
externalities we find here.

26We estimate the following regression log(wij) = α + β1Educationi +β2Hispanici + β3Whitei + β4Age + β5Age2 +
γj + εij , where wij is wage of worker i in MSA j, Education is a dummy variable for educational attinement (with high-
school dropouts, high school graduates, college graduate categories), Hispanic and White are dummies for race, and γj is
a MSA fixed-effect. The residual wage for each worker is calculated as α+ γj + εij .

27The wage gap between the MSAs with the highest and lowest weekly wages is about $1,300 when we do not control
for worker characteristics, while it declines to about $900 for residual wages.
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Table 6: Robustness

Outcomes Benchmark Residual Fixed No Housing No Tax
Wages Land Production Rebates

Optimal τ 0.0139 0.0237 0.0229 0.0833 0.0069
Output (%) 1.42 0.72 1.31 0.17 1.75
Consumption (%) 1.51 0.77 1.39 0.17 2.12
Housing Consumption (%) -1.70 -1.01 -1.99 0 -2.02
Pop. change top 5 cities (%) 7.92 5.97 6.43 0.97 9.39
Frac. of Population that Moves (%) 3.44 2.47 3.09 0.43 4.25
Change in average prices (%) 5.20 3.22 5.51 1.85 6.52
Welfare gain (%) 0.0720 0.0328 0.0581 0.0027 0.108

actual land sizes. This is not surprising. When the all cities have the same land area, it is more costly

to move people to some of the productive cities that have indeed quite large land areas in the data,

such as New York-Northeastern NJ MSA. Table 6 shows the aggregate outcomes for an economy with

equal sized cities. Given the lower values for τ∗, the changes are muted compared to the benchmark

economy in which land areas differ across MSAs.

6.2.3 No Housing Production

We next shut down the housing production by setting B = β = 1. Hence, per-capita housing consump-

tion in a city is simply given by Tj/lj . Figure 11.C shows the housing prices in the model when there is

no production of housing. While the relation between population size and prices are now more in line

with what we observe in the data, a model without housing production implies a much larger dispersion

of prices across cities. In the benchmark economy, the ratio of the maximum to the minimum housing

price is about 13 (407/32). This ratio is much higher, about 1200, when we do not allow for production.

Hence, housing production allows us to generate housing prices that are in line with the data.

In an economy without housing production, the optimal level of τ is lower than its benchmark value,

i.e. the planner again finds it optimal to lower taxes in larger, more productive cities. The decline in

τ, however, is quite muted (τ declines from 0.12 to 0.08 while the decline was from 0.12 to 0.0145 in

the benchmark economy). As a result, both output and welfare gains are smaller than they were in

the benchmark economy. When housing is a stock, reallocation of workers to larger cities has a bigger

impact on housing prices. This limits the planner’s willingness to lower taxes in more productive cities.

6.2.4 Rebates and Transfers

In the benchmark economy, we assume that 82% of the tax revenue is rebated to households, in the form

of transfers that are independent of city size. Table 6 shows the results when we do not redistribute

any tax revenue back to households, i.e. TR = 0. Since the tax rebate is lump sum, it has exactly the

28



.7
.8

.9
1

1.
1

1.
2

A
m

en
iti

es
 (

La
nd

 V
ar

ia
bl

e)

.4 .6 .8 1 1.2
Amenities (Land Fixed)

new york, ny-northeastern nj

atlanta, ga

atlantic city, nj

boston, ma/nh

chicago, il

dallas-fort worth, tx

danbury, ct
flint, mi

houston-brazoria, tx

laredo, tx

los angeles-long beach, ca

miami-hialeah, fl

philadelphia, pa/njsan francisco-oakland-vallejo, ca

san jose, ca

stamford, ct

washington, dc/md/va

0
20

0
40

0
60

0
H

ou
si

ng
 P

ric
e

11 12 13 14 15 16
Log (Population)

new york, ny-northeastern nj

atlanta, ga

atlantic city, nj

boston, ma/nh

chicago, il

dallas-fort worth, txdanbury, ct

flint, mi

houston-brazoria, tx

laredo, tx

los angeles-long beach, ca

miami-hialeah, fl

philadelphia, pa/nj

san francisco-oakland-vallejo, ca

san jose, ca

stamford, ct

washington, dc/md/va

0
10

0
20

0
30

0
40

0
H

ou
si

ng
 P

ric
es

11 12 13 14 15 16
Log (Production)

Figure 11: Estimated amenities with fixed land versus the benchmark (variable land): A. Amenities
when land is fixed and variable; B. Housing prices when land is fixed; C. Housing prices when there is
no housing production.

same effect as an increase in government expenditure G. We know from the theory that an increase in

G leads to lower taxes in large cities, and hence a lower τ . This is confirmed here as we set the rebate

to zero, though quantitatively the impact is small.

7 Conclusions

We have studied the role of federal income taxation on the misallocation of labor across geographical

areas. More productive cities pay higher wages, and with progressive taxes, those workers also pay

higher average taxes. Given perfect mobility, the tax schedule affects the incentives of workers where

to locate. Our objective has been to calculate the shape of the optimal tax schedule in general equilib-

rium. When taxes change, citizens respond by relocating, but that in turn affects equilibrium prices.

Those equilibrium effects determine both the optimal spatial tax schedule as well as the quantitative
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implications.

Our findings are first, that the optimal spatial tax schedule is not flat and is sensitive to the level

of government spending, to the concentration of housing wealth, and to presence of agglomeration

externalities. From a welfare viewpoint, what matters for the population allocation is not only the

amount of government revenue and hence where it is best generated across differentially productive

locations, but also the implied value of housing. While lower taxes in big cities can generate higher

aggregate output and government revenue, they also make it more expensive to live.

Second, quantitatively, the optimal tax is less progressive than the existing schedule in the data.

Implementing the optimal schedule therefore favors the more productive cities. In equilibrium this

leads to output growth economy-wide and population growth in the largest cities. The output growth

is 1.42%. At the same time, there is first order stochastic dominance in the city size distribution where

the fraction of population in 5 largest cities grows around 8%. The welfare effects however are small,

0.07%. Welfare obviously goes up, but in small amounts. This is due to the fact that the cost of living

in the productive cities has increased commensurately. Our quantitative exercise also shows that the

size of the government, the concentration of housing wealth, as well as the presence of agglomeration

externalities play a critical role in determining the optimal tax differences between large and small

cities.
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Appendix

Proof of Proposition 1

Proof. The First Order Conditions for the housing production are,

pjB
1

ρ
[(1− β)Kρ

j + βT ρj ]
1
ρ
−1

(1− β)ρKρ−1
j = 1,

and,

pjB
1

ρ
[(1− β)Kρ

j + βT ρj ]
1
ρ
−1
βρT ρ−1j = rj ,

which implies

K?
j =

(
1− β
β

rj

) 1
1−ρ

Tj ,

and

Hj = B

[
(1− β)

(
1− β
β

rj

) ρ
1−ρ

+ β

]1/ρ
Tj . (7)

The zero profit condition implies (after factoring out Tj and rj):

pj = rj

(
1 +

(
1−β
β

) 1
1−ρ

r
ρ

1−ρ
j

)
B

[
(1− β)

(
1−β
β rj

) ρ
1−ρ

+ β

]1/ρ (8)

From the household problem we know that pjhj = α(w̃j +Rj + TR). Since market clearing in the

housing market requires that hjlj = Hj , this implies α(w̃j + Rj + TR)lj = pjHj which can be written

as

pjB

[
(1− β)

(
1− β
β

rj

) ρ
1−ρ

+ β

]1/ρ
Tj = αlj(w̃j +Rj + TR),

or, after substituting equation (8), rearranging and canceling terms:

rj

(
1 +

(
1− β
β

) 1
1−ρ

r
ρ

1−ρ
j

)
=
αlj(w̃j +Rj + TR)

Tj
. (9)

Observe that this expression consist of one equation in one unknown, rj , though there is no explicit

solution. Given the (numerical) solution for rj , we can use equation (8) to find pj .

In equilibrium each location has to give the same utility. Given equation (5), and normalizing
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a1 = 1, we have
aj
a1

=
lδ1(w̃1 + T1 + TG) ((w̃1 +R1 + TR)li1)

−αHα
1

lδj (w̃j + Tj + TG) ((w̃j +Rj + TR)lj)
−αHα

j

.

Using the expression for Hj in (7) we obtain:

aj
a1

=

lδ1(w̃1 +R1 + TR) ((w̃1 +R1 + TR)l1)
−α
[
(1− β)

(
1−β
β r1

) ρ
1−ρ

+ β

]α/ρ
lδj (w̃j +Rj + TR) ((w̃j +Rj + TR)lj)

−α
[
(1− β)

(
1−β
β rj

) ρ
1−ρ

+ β

]α/ρ
We can use the condition for optimal production wj = Ajlj and the fact that w̃j = (1− tj)wj . In equi-

librium, individuals are assumed to own land in proportion to their consumption of housing. Therefore

Rj satisfies:

Rj = (1− ψ)

∑
j rjTj∑
j lj

. (10)

The population allocation must satisfy feasibility:
∑

j lj = L.
Finally, in order to arrive at the aggregate resource constraint for this economy, we first aggregate

household budget constraints, cj + pjhj ≤ w̃j +Rj + TR, across cities

J∑
j=1

ljcj +

J∑
j=1

ljpjhj =

J∑
j=1

ljw̃j +

J∑
j=1

ljRj +

J∑
j=1

ljTR.

Since ljhj = Hj ,
∑J

j=1 ljRj =
∑J

j=1 lj(1 − ψ)
∑
j rjTj∑
j lj

= (1 − ψ)
∑

j rjTj , and
∑J

j=1 ljTR =∑J
j=1 lj

φG
L = φG, we have

J∑
j=1

ljcj +
J∑
j=1

pjHj =
J∑
j=1

ljw̃j + (1− ψ)
∑
j

rjTj + φG.

Adding and subtracting
∑

jKj to the right-hand side of this expression, we get

J∑
j=1

ljcj +
J∑
j=1

pjHj =

J∑
j=1

ljw̃j +
∑
j

rjTj − ψ)
∑
j

rjTj +
∑
j

Kj −
∑
j

Kj+φG.

Since the housing production function is constant returns to scale,
∑J

j=1 pjHj =
∑

j rjTj +∑
jKj (recall that rK = 1). Therefore,

J∑
j=1

ljcj =

J∑
j=1

ljw̃j − ψ
∑
j

rjTj−
∑
j

Kj+φG.
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Finally, note that
∑J

j=1 ljw̃j =
∑J

j=1 ljwj −G =
∑J

j=1 ljwj −
∑

j tjwj . Hence,

J∑
j=1

ljcj =
J∑
j=1

ljwj −
∑
j

tjwj − ψ
∑
j

rjTj−
∑
j

Kj+φ
∑
j

tjwj ,

which delivers us the aggregate resource constraint for the economy

J∑
j=1

ljcj + ψ
∑
j

rjTj +
∑
j

Kj + (1− φ)
∑
j

tjwj =
J∑
j=1

ljwj .

Proof of Proposition 2

Proof. I. Decentralized Equilibrium. Each consumer in city i ∈ {1, 2} optimizes his utility subject

to a budget constraint:

max
ci,hi

cihi

s.t. ci + pihi = wi +R,

where R = p1 + p2. Let x be the fraction of population that lives in city 1. The market clearing

conditions are given by

c1
x

=
c2

1− x

h1 =
1

x

h2 =
1

1− x
R = p1 + p2
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The entire system then is

c1
x

=
c2

1− x

c1 =
w1 +R

2

c2 =
w2 +R

2
1

x
=
w1 +R

2p1
1

1− x
=
w2 +R

2p2
R = p1 + p2

We can rewrite R = p1 + p2 = xw1 + (1− x)w2 so that

w1 +R

x
=
w2 +R

1− x
R = xw1 + (1− x)w2

or

w1 + xw1 + (1− x)w2

x
=
w2 + xw1 + (1− x)w2

1− x

or

2(w2 − w1)x
2 − 4w2x+ (w1 + w2) = 0

We have two explicit solutions for x:

x∗ =
2w2 +

√
2(w2

1 + w2
1)

2(w2 − w1)

x∗ =
2w2 −

√
2(w2

1 + w2
1)

2(w2 − w1)

Ramsey Problem. We solve the Ramsey problem where the planner chooses a taxes t1 and t2 such
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that:

max
t1,t2

c1x
−1x+ c2(1− x)−1(1− x)

s.t. w1t1x+ w2t2(1− x) = 0
c1
x

=
c2

1− x

c1 =
1

2
((1− t1)w1 +R)

c2 =
1

2
((1− t2)w2 +R)

h1 =
1

x
=

1

2

(1− t1)w1 +R

p1

h2 =
1

1− x
=

1

2

(1− t2)w2 +R

p2
R = p1 + p2

or

max
t1,t2

c1 + c2 =
1

2
[(1− t1)w1 + (1− t2)w2] +R

s.t. t2 =
−w1t1x

w2(1− x)

(1− t1)w1 +R

x
=

(1− t2)w2 +R

1− x

p1 = x
(1− t1)w1 +R

2

p2 = (1− x)
(1− t2)w2 +R

2
R = p1 + p2

where we rewrite R = (p1 + p2) = x(1− t1)w1 + (1− x)(1− t2)w2

max
t1,t2

1

2
[(1− t1)w1 + (1− t2)w2] + x(1− t1)w1 + (1− x)(1− t2)w2

s.t. t2 =
−w1t1x

w2(1− x)

[(1 + x)(1− t1)w1 + (1− x)(1− t2)w2] (1− x) = [x(1− t2)w1 + (2− x)(1− t2)w2]x

or

max
t1,t2

(
1

2
+ x

)
(1− t1)w1 +

(
3

2
− x
)

(1− t2)w2

s.t. t2 =
−w1t1x

w2(1− x)

2 [(1− t2)w2 − (1− t1)w1]x
2 − [4(1− t2)w2]x+ [(1− t1)w1 + (1− t2)w2] = 0
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Note that if t1 = t2 = 0, the x chosen is equal to the x∗ in the competitive equilibrium.

2(w2 − w1)x
2 − 4w2x+ (w1 + w2) = 0

Constrained Planner Choosing Populations. Finally, we also show that the Ramsey planner’s

solution can be attained by a planner who chooses the population across cities and who takes the con-

straint that workers are mobile and equate utility as given. The planner maximizes weighted aggregate

utility by choosing where the population lives:

max
x

c1h1x+ c2h2(1− x)

s.t. xc1 + (1− x)c2 = xw1 + (1− x)w2

c1
x

=
c2

1− x
.

h1 =
1

x

h2 =
1

1− x

Which implies

max
x

c1
1

x
s.t. x2c1 + (1− x)2c1 = x2w1 + (1− x)xw2,

or

max
x

xw1 + (1− x)w2

x2 + (1− x)2
.

The FOC is:

(w1 − w2)(x
2 + (1− x)2)− (xw1 + (1− x)w2)(2x− 2(1− x))

(x2 + (1− x)2)2
= 0

(w1 − w2)(x
2 + (1− x)2)− 2(xw1 + (1− x)w2)(2x− 1) = 0

(w1 − w2)(2x
2 + 1− 2x) + 2(xw1 + (1− x)w2)− (4x2w1 + (4x− 4x2)w2) = 0

2(w2 − w1)x
2 − 4w2x+ (w1 + w2) = 0

We thus find the same outcome x∗ as before.

The Unconstrained Optimal Allocation

The Ramsey planner chooses policies that are subject to market forces, equilibrium prices and mobility

of workers. As a result, her program is a constrained optimization problem. Now we consider an un-

constrained planner who chooses populations across cities and hence production, and also consumption.
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She cannot of course unbundle housing consumption from production, but she can choose consumption

independent of utility equalization.

Formally, the planner chooses the bundles lj , cj , hj in all cities j as well as housing capital and land

Kj , Tj to maximize Utilitarian welfare:

max
lj ,cj ,hj ,Kj ,Tj

∑
i,j

ajl
−δ
j c1−αj hαj lj (11)

s.t.
∑
j

cjlj +
∑
j

Kj + (1− φ)G =
∑
j

Ajlj

Hj = B
[
(1− β)Kρ

j + βT ρj

]1/ρ
, ∀j∑

i

hjlj = Hj , ∀j

Tj = T, ∀j∑
j

lj = L.

This is a system of 3× J + 2J + 2 + 3× J equations in the same number of variables. Again, there

is no explicit solution, so we solve it numerically to get quantitatively relevant predictions.

Proposition 3 Consider a simple representative agent economy with β = 1, δ = 0, φ = 0, aj = 1, and

Tj = T . If A1 < A2, then the unconstrained optimal allocation satisfies l1 < l2, c1 > c2, and u1 > u2.

There is no utility equalization in equilibrium.

Proof. See below.

The result for the unconstrained planner is illustrated in Figure 12. The planner chooses production

optimality, and therefore equates marginal product across cities. This inevitably entails locating a lot

of the workers in city 2, the high productivity city as illustrated in panel A. Doing that, the city size

distribution is not affected by government spending G. Panel C plots output which is constant but of

course, net of government spending it is decreasing in G. The consumption that the planner assigns to

the citizens does vary differentially across cities as shown in panel B. The higher G, the faster the decline

in consumption in city 1 relative to city 2. As less output is available with higher G and production

efficiency is not affected, the consumption allocation is purely based on marginal utility. For lower

disposable income levels, marginal consumption in the large city is relatively larger. This also helps

explain why in the optimal Ramsey problem the tax difference between large and small cities decreases

with higher G.

Further intuition behind this result can best be obtained by considering a limit case. When produc-

tivity is constant and independent of the city population, then from a production efficiency viewpoint,

production in the high productivity city is always superior to production in the low productivity city
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Figure 12: Optimal Taxes for the Unconstrained Planner given G in a two city example: A1 = 1, A2 =
2,L = 100, α = 0.31, γ = 0.5: A. Populations l1, l2; B. consumption c1, c2; C. Output Y and output
net of government spending Y −G.

and marginal products are never equalized. The following corollary characterizes the planner’s solution

in that case.

Corollary 1 Let A1 < A2. If γ converges to 1, then all production is concentrated in city 2 by nearly

all the population, and a minimal fraction of workers gets to consume all the output in city 1.

The corollary illustrates that the equity implications of the planner’s solution are extreme. A

minority vanishing in size consumes very large per capita consumption in the unproductive city. The

output is generated by the majority in the productive city. All output is generated in the productive

city in line with the Diamond and Mirrlees (1971a) and Diamond and Mirrlees (1971b) results. It is

optimal not to distort productive efficiency, and as a result, the marginal product of output across

cities should be equated. Since the marginal product converges to a constant as γ converges to one,

it is optimal to produce all output in the high TFP city. At the same time, those workers are given

zero consumption because due to housing supply, their marginal utility of one unit of consumption is

lower than that of the those living in small cities. As a result and because the utility is homogeneous

of degree one, the planner optimally assigns all consumption and utility to the few in the unproductive

city. Observe that when γ 6= 1, consumption is not independent of the production side, thus violating

the premise of Diamond and Mirrlees (1971a). As a result, optimal taxation involves equating marginal

productivity across cities.
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Proof of Proposition 3

Proof. The planner’s problem is:

max
cj ,hj ,lj

∑
j

c1−αj hαj lj

s.t.
∑
j

cjlj +G =
∑
j

Ajl
γ
j

hjlj = BL, ∀j∑
j

lj = T .

For the two city case, the FOCs are (with Langrangian multipliers φ, λ1, λ2, ψ):

(1− α)c−α1 hα1 l1 = φl1

(1− α)c−α2 hα2 l2 = φl2

αc1−α1 hα−11 l1 = λ1l1

αc1−α2 hα−12 l2 = λ2l2

c1−α1 hα1 = φ(c1 −A1γl
γ−1
1 ) + λ1h1 + ψ

c1−α2 hα2 = φ(c2 −A2γl
γ−1
2 ) + λ2h2 + ψ

Or

(1− α)c−α1 hα1 = φ

(1− α)c−α2 hα2 = φ

αc1−α1 hα−11 = λ1

αc1−α2 hα−12 = λ2

c1−α1 hα1 = φ(c1 −A1γl
γ−1
1 ) + λ1h1 + ψ

c1−α2 hα2 = φ(c2 −A2γl
γ−1
2 ) + λ2h2 + ψ
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or

h1
c1

=

(
φ

1− α

) 1
α

h2
c2

=

(
φ

1− α

) 1
α

h1
c1

=

(
λ1
α

) 1
α−1

h2
c2

=

(
λ2
α

) 1
α−1

c1
φ

1− α
= φ(c1 −A1γl

γ−1
1 ) + λ1h1 + ψ

c2
φ

1− α
= φ(c2 −A2γl

γ−1
2 ) + λ2h2 + ψ

or

h1
c1

=

(
φ

1− α

) 1
α

h2
c2

=

(
φ

1− α

) 1
α

h1
c1

=

(
λ1
α

) 1
α−1

h2
c2

=

(
λ2
α

) 1
α−1

α

1− α
φc1 = −φA1γl

γ−1
1 + λ1h1 + ψ

α

1− α
φc2 = −φA2γl

γ−1
2 + λ2h2 + ψ

From the first and second equations we obtain c1h2 = c2h1. From the first and third equations we

obtain h1 = α
1−αc1

φ
λ1

and the second and the fourth, h2 = α
1−αc2

φ
λ2

or
λj
φ = α

1−α
cj
hj

. The last two

equations can be written as:

α

1− α
c1 +A1γl

γ−1
1 − α

1− α
c1 −

ψ

φ
= 0

α

1− α
c2 +A2γl

γ−1
2 − α

1− α
c2 −

ψ

φ
= 0

or

A1l
γ−1
1 = A2(T − l1)γ−1
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or

l1 =

(
A2

A1

) 1
γ−1

(T − l1)

or

l1 =

(
A1

A2

) 1
1−γ

(T − l1)

or

l1 =
A

1
1−γ
1

A
1

1−γ
1 +A

1
1−γ
2

T

Now we can finalize the whole equilibrium allocation. From feasibility in the housing market, we

know that:

h1 =
BL

T
A

1
1−γ
1 +A

1
1−γ
2

A
1

1−γ
1

h2 =
BL

T
A

1
1−γ
1 +A

1
1−γ
2

A
1

1−γ
2

.

From the fact that c1h2 = c2h1, we get

c2 = c1

(
A1

A2

) 1
1−γ

,

and using the aggregate budget constraint

c1 =
A1l

γ
1 +A2l

γ
2 −G

l1 +
(
A1
A2

) 1
1−γ

l2

=

A
1

1−γ
1

(
T

A
1

1−γ
1 +A

1
1−γ
2

)γ
+A

1
1−γ
2

(
T

A
1

1−γ
1 +A

1
1−γ
2

)γ
−G

(
A

1
1−γ
1 +A

1
1−γ
2

)γ
A

1
1−γ
1

T

A
1

1−γ
1 +A

1
1−γ
2

+
(
A1
A2

) 1
1−γ

A
1

1−γ
2

T

A
1

1−γ
1 +A

1
1−γ
2

=

A
1

1−γ
1

(
T

A
1

1−γ
1 +A

1
1−γ
2

)γ
+A

1
1−γ
2

(
T

A
1

1−γ
1 +A

1
1−γ
2

)γ
−G

A
1

1−γ
1 T

A
1

1−γ
1 +A

1
1−γ
2

,
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and

c2 =

A
1

1−γ
1

(
T

A
1

1−γ
1 +A

1
1−γ
2

)γ
+A

1
1−γ
2

(
T

A
1

1−γ
1 +A

1
1−γ
2

)γ
−G

A
1

1−γ
2 T

A
1

1−γ
1 +A

1
1−γ
2

.

The equilibrium utility levels satisfy:

u1 =

A 1
1−γ
1

 T

A
1

1−γ
1 +A

1
1−γ
2

γ

+A
1

1−γ
2

 T

A
1

1−γ
1 +A

1
1−γ
2

γ

−G

1−α(
BL

T

)α(
A

1
1−γ
1 +A

1
1−γ
2

)
1

A
1

1−γ
1

u2 =

A 1
1−γ
1

 T

A
1

1−γ
1 +A

1
1−γ
2

γ

+A
1

1−γ
2

 T

A
1

1−γ
1 +A

1
1−γ
2

γ

−G

1−α(
BL

T

)α(
A

1
1−γ
1 +A

1
1−γ
2

)
1

A
1

1−γ
2

.

Clearly, given A1 6= A2, this implies that u1 6= u2. If A1 < A2 then l1 < l2, c1 > c2, u1 > u2. Moreover,

the more productive city is larger under the unconstrained planner’s problem than under the Optimal

Ramsey Taxation problem.

Wage and Population Distributions
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Figure 13: A. Histogram and Kernel density of labor force; B. Histogram and Kernel density of wages.

Estimating the Tax Functions

The OECD tax-benefit calculator provides the gross and net (after taxes and benefits) labor income at

every percentage of average labor income on a range between 50% and 200% of average labor income,

by year and family type. We simulate values for after and before taxes for increments of 25% of average

labor income. As the OECD tax-benefit calculator only allows us to calculate wages up to 200% of
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average labor income, we use the procedure proposed by Guvenen, Burhan, and Ozkan (2014). In

particular, let w denote average wage income before taxes as a multiple of mean wage income before

taxes, and t(w) and t(w) the marginal and average tax rates on wage income w. Also let ttop and wtop

be the top marginal tax rate and top marginal income tax bracket.28 Suppose w > 2 and wtop < 2 , i.e.

top income bracket is less than 2. Then,

t(w) =
(t(2)× 2 + ttop × (w − 2))

w
.

If wtop > 2 (which is the case for the US), we do not know the marginal tax rate between w = 2 and

wtop. First set

t(2) =
(t(2)× 2− t(1.75)× 1.75)

0.25

and use linear interpolation between t(2) and ttop

t(w) =


(t(2) +

ttop−t(2)
wtop−2 (w − 2) if 2 < w < wtop

ttop if w > wtop

Then average tax rate function for w > 2 is

t(w) =

(t(2)× 2 + t(w)× (w − 2))/w if 2 < w < wtop

(t(2)× 2 +
ttop+t(2)

2 (wtop − 2) + ttop × (w − wtop))/w if w > wtop

Land Distribution across MSA

The following figure shows the distribution of land across MSA.

28 Top marginal tax rate is taken from http://www.oecd.org/tax/tax-policy/oecdtaxdatabase.htm, Table I.7.
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